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Abstract

Many streaming applications demand continuous pro-
cessing of live data with little or no downtime, therefore,
making high-availability a crucial operational require-
ment. Fault tolerance techniques are generally expensive
and when directly applied to streaming systems with strin-
gent throughput and latency requirements, they might in-
cur a prohibitive performance overhead. This paper de-
scribes a flexible, light-weight fault tolerance solution in
the context of the SPADE language and the System S dis-
tributed stream processing engine. We devised language
extensions so users can define and parameterize check-
point policies easily. This configurable fault tolerance so-
lution is implemented through code generation in SPADE,
which reduces the overall application fault tolerance costs
by incurring them only for the parts of the application that
require it. In this paper we focus on the overall design of
our checkpoint mechanism and we also describe an incre-
mental checkpointing algorithm that is suitable for on-the-
fly processing of high-rate data streams.

1 Introduction
Stream processing has emerged as a paradigm to an-

alyze streaming data such as audio, video, sensor read-
ings, and business data in real-time. Data streams may
have extremely high rates. Traditional solutions for data
analysis, such as database management systems are usu-
ally not suitable, since they first store and then process
data. Databases enforce ACID properties, which impact
performance; therefore, they are not, in many cases, able
to process data at high rates with low latency.

Developers build streaming applications as data-flow
graphs. These graphs consist of interconnected stream
operators that implement analytics over incoming data
streams. Users deploy streaming applications as contin-
uous queries, since data sources (e.g., sensors) constantly
produce new information. For applications to generate se-
mantically correct results even in the presence of failures,
it is essential to employ fault tolerance techniques.

For instance, sensor-based patient monitoring applica-
tions require rigorous fault tolerance, since data loss or
computation errors may lead to catastrophic results. On
the other hand, there are applications that do not have such
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strict requirements. One such example is an application
that discovers pairs of caller/callee by data-mining a set
of VoIP streams [24]. In case of failures, VoIP packets
may be lost or a user can get disconnected from the VoIP
system. The application can still infer the caller/callee
pairs, although with less confidence. Such class of appli-
cations is called partial fault-tolerant. Moreover, in some
streaming applications it may be better to produce partial
results within a time bound than to produce complete re-
sults too late [4]. In systems that aim to provide maximum
data throughput, resources must be spent with parsimony.
Therefore, the one-size-fits-all fault tolerance is not the
best approach for streaming applications.

To achieve massive parallelism and scalability, stream
processing systems distribute the application over nodes
in a cluster. Hence they are subject to the failure model of
distributed systems [8], where messages can be omitted,
duplicated, nodes can crash and the network can become
partitioned. A successful technique to provide fault tol-
erance to large-scale distributed systems is synchronous
checkpointing [9]. While it can be applicable to streaming
applications, more specialized approaches can be more
appropriate. A streaming application is one particular
type of a parallel application. While the latter, in gen-
eral, has clear synchronization points (barriers), the for-
mer is constantly changing its state based on the incom-
ing data. Additionally, a typical streaming application has
real-time constraints. Stopping the application to coor-
dinate a checkpoint operation directly affects the timing
requirements. Many fault tolerance techniques were de-
veloped specifically for stream computing [12, 15, 25].
However, they do not consider the semantics of the ap-
plication and apply fault tolerance throughout the system.
This results in unnecessary performance overhead and an
overall degradation of performance when contrasted with
a more targeted approach.

In this paper we describe the design of checkpoint-
ing techniques for partial fault-tolerant streaming appli-
cations. We deployed such techniques in SPADE [11], the
declarative stream processing language of System S – a
massively scalable and distributed stream processing mid-
dleware under development at IBM Research. To provide
flexibility to the user, we do not enforce a single check-
pointing policy for the whole application. More specifi-
cally, we allow the application developer to annotate his
SPADE application source code, so that he can choose



which parts of his application should be fault-tolerant. The
use of language-level annotations is a natural approach to
specify such policies, since the developer knows his appli-
cation semantics and failure behavior. To carry out the be-
havior chosen by the user, we take advantage of SPADE’S
code generation framework to automatically produce the
extra code required by the fault tolerance policies.

Our main contributions are: (i) a framework for ap-
plying fault tolerance policies for streaming applications
via language annotations; (ii) an incremental checkpoint-
ing algorithm for sliding window-based stream operators;
(iii) a code generator that outputs specialized checkpoint-
ing code based on the stream operator type and instance.

The rest of this paper is organized as follows. Section 2
discusses the general architecture of System S and its fault
tolerance guarantees. Section 3 describes the SPADE lan-
guage, its programming model, and its code generation
framework. Section 4 describes our checkpointing tech-
niques for user-defined operators and window-based op-
erators. Section 5 demonstrates the applicability and ben-
efits of our technique and includes several performance
studies using a real-world manufacturing application as
well as synthetic applications. Section 6 discusses the re-
lated work. Finally, Section 7 concludes the paper.

2 System S
As mentioned in Section 1, System S is a distributed

large scale stream processing middleware. One of its
characteristics is to be non-transactional, since it does not
have atomicity or durability guarantees. This is typical in
stream processing systems where applications are contin-
uously running and quickly producing results.

In System S, independent executions of an applica-
tion with the same input may generate different outputs.
There are two main reasons for this non-determinism.
First, stream operators often consume data from more than
one source. If the data transport subsystem does not en-
force message ordering across data coming from different
sources, there is no guarantee in terms of which message
the operator will consume first. Second, operators can use
time-based windows. Some stream operators (e.g., aggre-
gate and join) produce output based on the data within
specified window boundaries. For example, if a program-
mer declares a window which accumulates data over 20
seconds, there is no guarantee that two different runs re-
ceive the same amount of data in the defined time interval.

System S deploys each application as a job. A job is
composed of multiple Processing Elements (PEs), which
are containers for the operators that make up an applica-
tion data-flow graph. A PE hosts one or more stream op-
erators. To run a job, the user contacts the Job Manager
(JMN), which is responsible for dispatching the PEs to re-
mote nodes. The JMN contacts a Resource Manager to
check for available nodes in the system. Then, JMN con-
tacts the Master Node Controller (MNC) on the remote
nodes, which instantiates the PEs locally. Once the PEs
are running, the Stream Processing Core (SPC) is respon-
sible for carrying out the stream connections and trans-
porting data between PEs.

The System S middleware has many self-healing fea-
tures. As a central component, JMN plays a fundamental
role in this. Besides dispatching PEs, JMN also monitors
their life-cycle. Each MNC monitors which PEs are alive
in its local node and sends this information to JMN. If a
PE fails, JMN detects it and re-dispatches the PE in the
same node. If the PE has crashed due to a node failure,
JMN may restart the PE in a different node. During the
recovery time, the behavior of the PEs connected to the
crashed PE differs. The behavior depends on the specific
position of the PE in the data-flow graph, as it is shown by
Figures 1 and 2.

Figure 1 shows an example of a graph with 6 PEs. PE
1 sends the same data to PE 3 and PE 4. PE 4 also con-
sumes data from PE 2. PE 5 and 6 consume data from
PE 3 and 4, respectively. Figure 2 shows the consequence
of a failure in PE 4. As expected, PE 6 does not have in-
put streams to process, therefore, it does not produce any
data. The behavior differs for PE 1 and PE 2, since they
are data producers (also referred as source PEs). SPC dis-
cards all the new data PE 2 sends, given that there is no PE
to consume it. PE 1 still has one live connection, so it con-
tinues to send new data to PE 3, but it stops sending data
to PE 4. Once PE 4 is reintegrated, the connections are re-
established. At this point, PE 2 stops discarding data and
PE 1 resumes sending new data to both links. More details
on SPC and System S failure behavior can be found in our
earlier work [1, 14].
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PE 3 PE 5 PE 1

PE 4 PE 6PE 2

PE 3 PE 5

X

Figure 1: SPC normal behavior
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Figure 2: SPC under PE failure

3 SPADE
SPADE [11] is a language and a compiler for creat-

ing distributed data stream processing applications to be
deployed on System S. SPADE offers: (i) a language
for flexible composition of parallel and distributed data-
flow graphs; (ii) a toolkit of type-generic built-in stream
processing operators; (iii) an extensible operator frame-
work, which supports the addition of new type-generic
and configurable operators to the language, as well as
new user-defined operators (UDOPs) used to wrap exist-
ing, possibly legacy analytics; (iv) a broad range of edge



adapters used to ingest data from outside sources and pub-
lish data to outside destinations, such as network sockets,
databases, file systems, etc.

The SPADE language provides a stream-centric,
operator-based programming model. The stream-centric
design implies a programming language where an appli-
cation writer can quickly translate the flows of data from
a block diagram prototype into the application skeleton by
simply listing the stream data flows. The second aspect,
i.e., operator-based programming, is focused on design-
ing the application by considering the smallest possible
building blocks that are necessary to deliver the computa-
tion an application has to perform. In summary, SPADE
programs are data-flow graphs, where operators are con-
nected via streams and serve as basic computational units
performing stream transformations. A tuple is the basic
unit of data in a stream. Each tuple has a set of attributes,
built from SPADE basic types (e.g., integer, string).

A key distinction between SPADE and other stream
processing middleware is its emphasis on code genera-
tion. Given an application specification in the SPADE lan-
guage, the SPADE compiler generates specialized applica-
tion code based on the computation and communication
capabilities of the runtime environment. This specializa-
tion includes many aspects, including code fusion. Code
fusion is the ability to place multiple operators inside a
single PE. Instead of using the regular stream transport,
the streams are converted into function calls [2]. Fusion
results in higher operator throughput, but it has an impor-
tant implication on fault tolerance. If an operator in the
fused group crashes due to a software bug, this results in
the crash of the whole set of operators hosted by a PE.

4 Checkpoint Design
As described in Section 3, SPADE has an operator-

based programming model. To checkpoint an operator,
it is important to define the behavior of the operator under
failure and the state it should have once it recovers. To
minimize the performance overhead, we have to develop
techniques that are specific to individual operator types
and that can be customizable by different instances a de-
veloper might employ in the context of one application.
Here is where we can take advantage of the SPADE’S com-
piler and code generation framework. With the knowledge
of the application, SPADE can generate code that uses spe-
cialized checkpoint techniques for each operator instance
based on their parameters. For each operator we have to
take into account the following three aspects: (i) the mini-
mal operator state required in order to recover after a fail-
ure, (ii) whether the operator is able to produce semanti-
cally correct results after a recovery from a failure, (iii)
whether the restored state contains stale data. We assume
a fail-stop model for an operator failure.

Regarding operator state, SPADE has both stateless and
stateful operators. An example operator that can be ei-
ther stateless or stateful is a functor. Functors perform
tuple-level manipulations such as filtering, projection, and
mapping. For every incoming tuple, the functor generates
an output, unless the input tuple does not satisfy the filter

predicate. If the filter predicate does not involve any vari-
ables other than the attributes of the current tuple (e.g., a
stream attribute in a tuple is greater than a value), there is
no need to save state. If the operator crashes and restarts,
it can still filter tuples with the same predicate. The de-
veloper can also customize the functor operator to update
state variables when it receives a tuple (e.g., to compute
the running average for an attribute). In this case, a functor
is stateful and the state variables should be checkpointed.
Note that the variable value can be affected by tuple loss
(e.g., maximum value of an attribute). This should be con-
sidered when deploying the checkpoint technique.

Depending on the operator type, checkpointing the in-
ternal operator state and restarting it may not be sufficient
to provide correct operator semantics. One such example
is the barrier operator. Barriers synchronize logically re-
lated streams. The operator emits an output tuple every
time it has at least one tuple from all of its inputs. As de-
scribed in Section 2, when a PE fails, tuples may be lost
during the recovery time. For a barrier operator to provide
correct results after recovery, we need to save in-flight tu-
ples. If tuples are lost, there is no guarantee that the logi-
cal pairing the operator produces is correct. For this type
of operator, it is mandatory to apply other techniques that
save in-flight tuples, such as upstream backup [12]. The
difference of our technique is that through code genera-
tion we can enforce in-flight tuple buffering only for the
operators that require such semantics.

In streaming applications, it is possible that the oper-
ator state is valid only during a certain time frame. One
example is the aggregate operator. The aggregate opera-
tor groups and summarizes the incoming tuples according
to an operation (e.g, sum, average, among others). It per-
forms the operation over all the tuples that are inside a
window boundary. One option available to the developer
is to parameterize the window behavior based on size (x)
and an output interval (y). The size of the window can be
defined as all the tuples accumulated over the last x sec-
onds. As new tuples arrive, the operator discards tuples
older than x seconds. At every y seconds, the operator
computes the aggregate function based on the current con-
tents of the window. On the event of a failure, the restored
state of an aggregate contains all the tuples that are in-
side the window at the time of the checkpoint. This means
that on recovery the middleware must handle stale data. In
normal operation, some of these tuples would have been
discarded due to the arrival of new tuples. Therefore, the
recovery routine has to eliminate the expired tuples.

In the next sections we show how we modified the
SPADE infrastructure to support checkpointing and how
we added fault tolerance to user-defined operators as well
as the built-in join operator, which is an example of a win-
dowed operator. Our checkpointing technique applies to
most other windowed operators; however, due to space
constraints, this paper focuses only on the join.

4.1 SPADE Support

To selectively provide fault tolerance, we allow the
user to define in his source code what parts of his ap-



stream CountStream(count: Int, str: String)
:= Source()
["ctcp://src.somewhere.com:789"]{}

stream AverageStream(avg: Int, str: String)
:= Udop(CountStream)["Avg"]{}
-> checkpoint=10 # 10 seconds

Figure 3: Checkpoint annotation in SPADE

plication should be fault-tolerant by employing language
constructs. After the user annotates his application, the
SPADE compiler generates code that saves the state of the
selected operators with a pre-established frequency. For
built-in SPADE operators, the compiler automatically gen-
erates checkpoint methods. The state of each operator is
assumed to be independent from each other. When opera-
tors are fused in the same PE, the state of each of them is
saved at their specified frequency. We do not save them all
at the same time to allow maximum possible throughput.
Due to performance overheads, the user may not want to
checkpoint an operator with a large state at the same fre-
quency of an operator with small state. The state indepen-
dence also applies to PEs. During a PE recovery, the states
of other interconnected PEs are not rolled back. This is
consistent with the recovery model outlined in Section 1.

Figure 3 shows an example of how to specify that
an operator should be checkpointed. The example has
a source (Source) and a user-defined (Udop) opera-
tor. The source stream (CountStream) produces tuples
with an integer (count) and a string (str), extracted
from the packets coming from a TCP client located at
src.somewhere.com:789. The user-defined opera-
tor (UDOP) creates an AverageStream where each tu-
ple contains an integer (avg) and a string (str). Note
that the UDOP contains the checkpoint keyword and
the associated checkpoint frequency in seconds (10).

The SPADE compiler generates code both for the oper-
ators and the PEs (with or without fusion). For the opera-
tors, it generates extra code so it can implement the check-
pointing policy. The extra code is dependent on the oper-
ator type and configuration. Further details on the gener-
ated code is given in Sections 4.3 and 4.4. The compiler
modifies the configuration of the PEs to selectively enable
checkpoint services for its operators.

4.2 Runtime Support

The PE execution flow changes if any of the operators
in a PE has the checkpoint keyword. Figure 4 shows
the PE operation steps with checkpointing. A PE is com-
prised of a PEWrapper, which manages all the operators
it contains (OP1-OP3). When the PE starts, it initiates a
thread (PECheckpoint) that is responsible for carrying
out the checkpoint policy (step 1). PECheckpoint veri-
fies which operators should checkpoint and builds a prior-
ity queue with their next checkpoint timeout. In step 2, the
thread removes the next operator to checkpoint from the
queue (getExpiringOperator()) and sleeps until it
is time to save the next state snapshot. When the thread
wakes up, it invokes the getCheckpoint() method of
the operator (step 3). This method contains the logic to se-

getCheckpoint(ckpt)

PEWrapper

OP1 OP2 OP3

PECheckpoint
Thread->

Create() OPState

getExpiringOperator()

saveState()

.PEid.ckpt/
Temp-i.ckpt

.PEid.ckpt/
Perm-i.ckpt

rename()

1

2

3

4

Figure 4: PE checkpoint operation

rialize the operator state. While the getCheckpoint()
method executes, the operator cannot process any new in-
coming tuples. Once the method call returns, the thread
saves the serialized state to the storage subsystem via the
OPState class (step 4). OPState saves the new state in
a temporary file first, which is later renamed to a perma-
nent file through an atomic rename() operation.

The PE recovery is similar. When the PE starts up,
it searches for the checkpoint files based on the PE and
the operator IDs. These identifiers are constant through-
out the lifetime of the PE. At first, the restore procedure
checks the integrity of the checkpoint file via a hash value
computed and stored by the OPState class. If the file is
corrupted, the procedure discards the state and the oper-
ator restarts with a fresh state. One option is to maintain
different versions of checkpoint files and restore an older
checkpoint in case of corruption of the latest one. File
corruption is handled differently when the operator re-
builds its state from multiple files. Such case is described
in Section 4.4 in the context of the join operator. When
the checkpoint file is valid, the restore routine invokes the
method restoreCheckpoint() in the operator class.
Similar to the serialization function, the de-serialization
implementation is specialized for each operator type.

4.3 User-Defined Operator
In SPADE, the user has the capability to extend the

basic set of built-in operators via user-defined operators
(UDOPs). With UDOPs, the developer can use external
libraries and implement customized operations for his par-
ticular application. SPADE generates skeleton code so the
user can easily handle tuples from System S streams, pro-
cess them with the specialized code, and send them over
as a System S stream to other operators.

To checkpoint UDOPs, the SPADE compiler adds
checkpoint method interfaces to the generated skeleton.
The user has to fill-in the methods with the appropri-
ate serialization logic. This approach is similar to the
technique employed in the Fault-Tolerant CORBA stan-
dard for application-level state checkpointing [18]. The
PECheckpoint thread automatically invokes the serial-
ization methods at the specified frequency.

Figure 5 shows the generated interfaces and an exam-
ple of how to add the serialization code. This is part of the
SPADE output for the code shown in Figure 3. In this ex-
ample, the state of the UDOP has two member variables,
namely avgCount and numCount. The user receives a
reference to a serialization buffer object (SBuffer), used
both for the state saving and restoring methods. The user
has to serialize/de-serialize the data to/from the buffer in



void UDOP_Avg::getCheckpoint(
SBuffer &checkpoint) {
AutoMutex am(mutex);
checkpoint << avgCount << numCount;

}
void UDOP_Avg::restoreCheckpoint(
SBuffer &checkpoint) {
AutoMutex am(mutex);
checkpoint >> avgCount >> numCount;

}

Figure 5: UDOP checkpoint interface

the same order. Because other methods can modify the
member variables during checkpoint, they must be pro-
tected by a mutual exclusion construct.

4.4 Join Operator

The join operator correlates two streams. The streams
are paired up based on the join predicate and the window
configuration. Two different windows (one per incom-
ing stream) group the tuples from each incoming stream.
Each stream can have a different window configuration.
The window keeps the input tuples in the order of arrival.
Once the operator receives an input tuple from stream 1, it
evaluates the predicate condition against all tuples in the
window of stream 2. If the predicate evaluates to true, the
operator pairs the matching tuples and sends them down-
stream. After the pairing stage, the operator inserts the
input tuple into its corresponding window. If the window
is full, the oldest tuple is discarded, i.e., the window slides.

A join operator can have an arbitrarily large window.
For example, the application described in Section 5.1 has
three join operators. The sizes of two of them are 512,000
and 128,000 tuples. Tuples in join operators may accumu-
late over a long period of time, depending on the stream
input rate. If the operator crashes and there is no check-
point, the operator produces few outputs for a long time,
since it has to fill up its windows in order to produce
matches at full rate. With checkpoint, we can recover most
of the window content. Therefore, the operator is able to
produce matches right after the restore operation.

If for the join operator we use the same checkpoint
technique employed for UDOPs, all the tuples inside the
window should be serialized. This results in the serial-
ization of large chunks of data, which introduces a pro-
hibitive performance overhead. To overcome this prob-
lem, we devised an incremental checkpointing technique
for sliding window-based operators, such as joins. Incre-
mental checkpointing algorithms for stream computing re-
quire performing a checkpoint maintenance operation per
tuple that arrives to an operator [25]. For low-cost check-
pointing, both tuple insertion and serialization should be
light-weight operations.

Incremental Checkpoint Algorithm

In a sliding window configuration, as new tuples ar-
rive, the older ones are evicted from the window. This
behavior can be implemented with a double-ended queue
data structure. New tuples are inserted at the tail of the
queue and old tuples are removed from the head of the

queue. Between two checkpoints, the state of the opera-
tor can be described by two possible configurations. The
first is if the window only has new tuples, meaning that
the total number of new tuples since the last checkpoint is
greater than the size of the window. In this case there is no
common state between the last checkpoint and the current
one. If the number of new tuples is less than the size of
the window, the serialization time can be decreased by not
repeating this operation for tuples that are part of both the
last and the current checkpoint.

To incrementally save sections of the same window, we
use independent checkpoint files. Saving a sliding window
in one file is not appropriate. To match the position of
the tuples in the window, we would need to change the
position of the tuples in the file. This is not an efficient
approach, since we need to rewrite the whole file to disk.

Using page protection hardware to detect which mem-
ory pages of the operator process we should save, such as
in Libckpt [19], is also not suitable. As mentioned in Sec-
tion 3, SPADE can fuse a set of operators within a single
PE. This means that all operators are running in the same
memory space; hence, memory pages of all the operators
are being modified and serialized. This approach breaks
the language semantics and records unnecessary state.

One option to save sections of the window is to save
one tuple per file, serializing only the new tuples at ev-
ery checkpoint interval. However, this can generate thou-
sands of files, incurring a prohibitive overhead. Another
approach is to save all new tuples in a single file. Due
to system non-determinism (e.g., network), it is highly
likely that there is a different number of new tuples at each
checkpoint interval. This results in an undefined number
of files for the state of each join window. This creates
problems in both recovering the state and garbage collect-
ing the files. Without garbage collection, we may have
to inspect a large number of files to determine the correct
state upon recovery.

To overcome the aforementioned problems, we devised
a circular buffer data structure that divides the sliding win-
dow into fixed groups of tuples. As a result, we can control
the number of checkpoint files and avoid the garbage col-
lection problem. At every checkpoint interval, we verify
which groups have new tuples and save their contents to
disk, serializing both new and old tuples in a group. We
limit re-serialization by dividing the window into smaller
groups. Groups that did not change between two check-
point intervals do not need to be re-saved. Since it is a slid-
ing window, only groups with more recent tuples change.

Each position in the circular buffer contains the follow-
ing data: (i) a checkpointing file name; (ii) a dirty bit,
which indicates if group should be serialized to disk; (iii)
the current number of tuples in the group; (iv) the win-
dow index of the most recent tuple in the group, so we can
correctly index the double-ended queue data structure. To
decrease the performance overhead, our algorithm updates
the circular buffer only at every checkpoint interval.

The number of positions in the circular buffer data
structure is based on the number of tuples we want to save
per checkpoint operation. We divide the window size by
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Figure 6: Join checkpointing operation

the number of tuples per checkpoint file and one extra po-
sition. The extra position accounts for the window slide.

Figure 6 shows an example of a count-based 15-tuple
sliding window. In this example, we divide the window
in groups of 5 tuples. This results in 4 checkpoint groups.
At checkpoint time t1, the window contains 13 new tu-
ples (A-M). G1 and G2 contain 5 tuples each, while G3
contains 3. The checkpoint routine evaluates the circular
buffer structure and finds that G1-G3 are dirty. At this
point, it serializes the tuples based on the indexes main-
tained by the circular buffer. Like in UDOPs, no tuple
processing is allowed during serialization. After the seri-
alization, the checkpoint routine cleans the dirty bits in the
circular buffer and saves the tuple contents to disk.

At time t2, the window has 5 new tuples. G3 has tuples
N-O and G4 has tuples P-R. G1 lost 3 tuples (A-C) due
to the window slide. The checkpoint method checks that
G3 and G4 are dirty, and serialize all their contents to disk
(K-R). Even though G1 lost tuples, its corresponding file
is not updated. This file is invalid only after G1 loses all
its tuples. The checkpoint thread reuses this file after the
window slides by a whole group size.

Restore Algorithm

To recover the operator state, we read all files related to
a window. Since we use a circular buffer, the first valid tu-
ple of the window can be in any group. We start to rebuild
the window from the file that has the oldest write times-
tamp. The oldest file corresponds to the window segment
that was not updated for the longest time; hence it is the
beginning of the sliding window. Restoring all the tuples
from the oldest file may result in a window bigger than its
maximum size. Thus, we discard all tuples that exceed the
total size of the window.

As mentioned in Section 4, another factor we have to
consider during state restore operations is stale data. If
the operator had not crashed, some of the tuples from the
beginning of the window would have been discarded. We
eliminate the stale data by estimating how many tuples
would have been discarded during normal operation. The
estimate is used to remove the top N tuples from the win-
dow. We compute the number of stale tuples by the fol-
lowing formula:

Ntuples = (Trecovery − Tserialization) ∗Ntuples/sec

Trecovery is the time after the de-serialization rou-
tine completes. The time of operator state serializa-
tion (Tserialization) and the number of tuples per second
(Ntuples/sec) are retrieved from the checkpoint file. Both
data are obtained at runtime and are serialized with the
tuples to the checkpoint file. Note that we calculate an ap-
proximation of the number of stale tuples, since there may
be a variance on the input tuple rate.

Our recovery routine also handles corrupted check-
point files. As the operator state is divided in different
files, even if one of the files is corrupted by a disk failure,
we can still recover the operator state. The implication of
a corrupted file is the loss of, at most, the same number of
tuples contained in a checkpoint group.

Code generation
To enable checkpointing, the SPADE compiler gener-

ated modified join code. The join operator code has two
main methods – one for each input port. These methods
are changed to include a mutual exclusion variable and a
counter of new tuples per window. This is the only code
added to the operator critical path. For per-group1 join
operators [2] – where the operator allocates a new sliding
window depending on the tuple key attribute content – we
add code to dynamically allocate our circular buffer data
structure and the new tuple counter.

The new counter helps to estimate the operator input
rate and to update the indices contained in the circular
buffer. Once the checkpoint method runs, it slides the cir-
cular buffer data structure by the number of new tuples.
The circular buffer code is generic and does not need to
be specialized for each join configuration. The only pa-
rameters it needs are the window size and the number of
tuples each checkpoint group has. This number can be es-
timated based on the tuple size and operator input rate and
can be learned during the operator profiling phase [10].

For incremental checkpointing, the checkpoint method
interface changes. Since we need independent serializable
buffers, we add extra checkpoint methods at the opera-
tor interface. The checkpoint thread invokes the correct
checkpoint/restore method according to the operator type.

For per-group join operators we automatically gener-
ate a specialized class that associates serialization buffers
and per-group keys. Since the key type is dependent on
the tuple type, which is defined at the language level, the
checkpoint thread does not know the key type. This spe-
cialized class abstracts the serialization buffer key-based
access to the checkpoint thread. In Section 5.2 we show
the overhead imposed by our technique both for join op-
erators with one sliding window and for per-group joins.

5 Experimental evaluation
To evaluate our technique, we conducted two different

experiments. The first employs checkpointing in a UDOP
that is part of a real-world manufacturing application. The

1A per-group operator emulates the existence of several/disjoint in-
stances of the operator processing tuples associated with one logical
group. For example, joining stock market transactions related to IBM
independently from transactions related to Google. Note that, in this
example, the per group key attribute is the company attribute.



application builds statistical models over streaming data.
The experiment objective is to evaluate how the applica-
tion behaves under a UDOP failure by quantifying the
crash impact on the accuracy of the application output.
The second experiment evaluates the performance over-
head of our checkpoint technique for join operators. We
devised synthetic applications with different join configu-
rations and evaluate how different checkpoint parameters
impact the operator performance.

5.1 Application Output Deviation

To quantify the impact of our checkpoint technique
on the application output, we used an application called
FAB [23]. FAB generates two statistical models from sev-
eral sensors embedded in semiconductor manufacturing
tools used in IBM’s chip manufacturing facilities. The
models are built to predict the wafer yield from the in-
put sensors. One of FAB’s outputs is a quality metric
(QM), which compares the value predicted by the statisti-
cal model and the ground truth, i.e., the actual wafer yield
metric. For our runs, the actual wafer yield was collected
along with sensor reading from the real manufacturing en-
vironment during the production of 9000 wafers.

For this experiment, we use FAB’s QM to quantify how
our checkpoint technique performs when facing crashes in
the operator that creates and maintains the incrementally
built classification model. This operator is implemented
as a UDOP, which generates model parameters based on
information accumulated during runtime. If the UDOP
crashes and no checkpointing is implemented, it loses all
its collected information. Therefore, after a UDOP re-
store, it rebuilds its model parameters from scratch, los-
ing valuable historic data previously used to fine-tune the
classification model. When checkpointing is in place, all
the UDOP state variables are maintained. After recov-
ery, the UDOP produces model parameters from the same
state it had before the crash. For this application, we do
not buffer tuples while the operator is recovering. If there
is any input tuple sent to the UDOP while it is offline, the
tuple is discarded. Note that while there is the potential
for data loss, it does not critically affect the accuracy of
the classification model.

FAB has 79 operators. For the purpose of this exper-
iment, we run one operator per PE. If we inject a crash
fault in the statistical model operator, all the other 78 op-
erators will continue to run. The PEs are distributed across
10 nodes, each with 4 Intel Xeon 3 GHz processors. The
average runtime of the application is 30 minutes. How-
ever, we consider that one experiment run is complete only
when all the sensor inputs available have been processed.
To quantify the output deviation of the application, we ran
FAB in the following scenarios: (i) FAB without UDOP
checkpoint and no PE crash (S1); (ii) FAB with UDOP
checkpoint at every 1 second and PE crash (S2); (iii) FAB
without UDOP checkpoint and PE crash (S3).

We ran each scenario 40 times. For S1, all runs pro-
duced the same predicted wafer yield. Even though FAB
contains non-deterministic operators (e.g., time-based op-
erators), they did not affect the QM output during our runs.

We used this output as the baseline to compute output de-
viation under the PE crash scenarios.

Since the time of the failure can impact the output de-
viation due to the amount of accumulated state in the clas-
sification model, each run has a different crash time. For
S2, we randomly pick a time between the beginning of
the application and the average application runtime (30
minutes). At that time, we inject a fault in the statistical
model PE via a kill command. We restore the PE after 2
to 5 seconds, which is the estimated failure detection time
in System S. Once all input is processed, we finish the
application and collect all its results (e.g., predicted wafer
yield) and injection data (e.g., crash time). S3 employs the
same fault injection parameters as S2, so we can compare
outputs produced with equivalent failure times.

S1 produces 107 wafer yield predictions and outputs
the aforementioned QM for each one of them. We com-
pare each QM produced by the run without PE crash and
the run with PE crash. The difference between the two
QMs is called prediction error. To evaluate the overall
output deviation between failed runs and the golden run
we computed the root mean squared error (RMSE) of the
prediction errors. The RMSE shows how far from the cor-
rect answer the failed runs are on average. Note that we
compare wafer yield prediction errors starting from the
failure point onward. Every prediction produced before
the failure is discarded from the RMSE computation.

The RMSE for S2 is 4.80, while for S3 is 7.79. Our
experiments show that the prediction error distribution for
the runs without checkpoint have longer tails than the runs
with checkpointing. This means that runs without check-
point produced QM samples very distant from the correct
value. This can be seen in Figure 7, which shows the cu-
mulative distribution function (CDF) for the prediction er-
rors in one of our runs. The prediction errors are in log
scale. For this run, the checkpoint scenario generated re-
sults where the predicted value was at most 6 points away
from the correct value. On the other hand, the checkpoint
free scenario produced predictions that reached up to 52
points away from the correct value.

The performance overhead for checkpointing FAB’s
statistical model operator is negligible, since it did not
change the tuple processing rate. It also did not affect
the results produced by the non-deterministic operators
downstream. We observed that by checking that all the
measured QMs before operator crash were identical to the
ones produced by the checkpoint-free run.

5.2 Checkpoint Performance Overhead

To quantify the performance overhead of our check-
pointing technique for join operators, we devised two syn-
thetic SPADE applications. Each application contains four
operators. Two of them are source operators, which send
data to a join operator. The join operator correlates the
data and sends the output to a sink operator. The sink
writes the join output to a file. The objective is to stress
the join operator and evaluate the checkpoint technique
under high data loads.

The two applications differ by their join window con-
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Figure 7: CDF of prediction error

figuration. They both correlate stream 1 (S1) with stream
2 (S2), however, the second application uses the per-group
window modifier for S1. The attributes in S1 are two in-
tegers and one 70-byte string. S2 contains one integer and
one 10-byte string. The join matches the streams when
the integer of S1 is equal to the one in S2. The join out-
put stream contains all attributes from S1 plus the string
attribute from S2.

The operators are hosted by 4 PEs, which are placed
in 4 different nodes interconnected by Gigabit Ethernet.
Each node runs Linux on 4 Intel Xeon 3GHz processors.
Both source and sink operators read/write data to their lo-
cal hard disk. The join operator saves its checkpoint files
in a shared file system, in this case NFS. The NFS server
is shared with approximately another 200 nodes.

Single-window Join
For the first application, we evaluate the checkpoint

performance varying the window size and the group size.
The window of S1 is parameterized with the following
sizes: 8192, 16384, 32768, 65536 and 131072. The win-
dow of S2 is fixed with size 0. Tuples from S2 are com-
pared against S1 to generate an output tuple, but the op-
erator does not maintain S2 tuples in its internal window
buffers. Therefore, the checkpoint routine serializes only
tuples from the first window. The statistical distribution
for both data sources is uniform. We evaluated the check-
point overhead for this scenario under two checkpoint fre-
quencies: 1 and 10 seconds. To assess how the window
group size impacts the performance, we divided the win-
dow of S1 in 4 different group sizes. Each window size
was divided in the following number of tuples/group: 512,
1024, 2048 and 4096. We ran each configuration 30 times,
where each execution lasted 200 seconds.

The checkpoint overhead is compared to the operator
performance when running without checkpoint (IO rate
with checkpoint / IO rate without checkpoint). Each win-
dow configuration has a different Input/Output (I/O) rate,
which is shown in Table 1. The input rate is the sum of
the inputs from S1 and S2. In all configurations, the input
rate is evenly distributed (approximately 50% for each in-
put stream). The rate is in tuples/second. Note that The
input rate decreases as the size of the window increases.
Because the operator has a greater number of tuple com-
parisons to make, it cannot process as many tuples as it
could in the case of smaller windows. This creates back
pressure on the output ports of the source operators, lead-

Window Size Input Rate Output Rate
8192 9350.94 25451.04

16384 5054.39 27180.69
32768 2503.25 25643.36
65536 970.19 14099.27
131071 889.64 13062.59

Table 1: I/O rates for single-window join in tuples/sec

Figure 8: I/O relative performance for single-window join with
checkpoint interval of 1 second

ing to lower input rates.
Figure 8 shows how much the checkpoint operation at

every 1 second affects the I/O rate of the join operator.
When the window size is 8192, the checkpoint overhead
is greater than 5% in all configurations. As Table 1 shows,
the input rate for this operator is 9350.94 tuples/sec. This
means that the number of new tuples is more than half of
the window, implying that, most of the time, we have to
save the full window. Since there is few common state be-
tween checkpoint intervals, our technique does not have
good performance. As the window size increases, we can
see the benefit of our algorithm. For a window of size
32768, the configuration with 512 tuples/group shows less
than 1% performance overhead. A reason for this scenario
to have better performance than configurations with big-
ger group size is that a group of 512 tuples results in less
data re-serialization. Note that as the number of groups
increases, the overhead of managing more files increases
as well. However, this overhead did not affect the perfor-
mance here, since it had the least performance penalty.

Figure 9 shows the I/O rates for a checkpoint interval
of 10 seconds. The I/O rates are higher compared to the
1 second scenario, since the checkpointing routine spends
less time in serialization. When the checkpoint interval is
higher, the performance is better for bigger group sizes.
As the checkpoint interval increases, it is expected that
a configuration with higher number of tuples/group per-
forms better, since it needs to manage a number of files.

Per-group Join

The second application uses the join operator with the
per-group modifier for S1. The window has size 1024 tu-
ples for S1 and 0 for S2. The per-group modifier generates
one window of size 1024 based on a key attribute of the
stream. In this case, the attribute is one of the integers of
S1. For this experiment, the stream data has 50 different
integers for S1 and 600 different integers for S2 uniformly



Figure 9: I/O relative performance for single-window join with
checkpoint interval of 10 seconds
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Figure 10: I/O relative performance for per-group join

distributed. This generates 50 different windows of size
1024. Therefore, at every checkpoint interval, we have to
serialize new tuples in 50 different windows. Here, each
window is divided in 4 different groups sizes. The num-
bers of tuples/group are 32, 64, 128 and 256. The check-
point intervals are 1 and 10 seconds. We ran each config-
uration 30 times, where each run lasted 200 seconds.

Figure 10 shows the I/O relative performance for the
per-group join. The averages for input and output for the
configuration without checkpoint are 2026.52 tuples/sec
and 75856.67 tuples/sec, respectively. When the check-
point interval is 1 sec, the group size of 64 is the con-
figuration with lower performance impact. The number
of input tuples/sec decreases by 1.37%, while the output
rate decreases by 1.83%. When the checkpoint interval is
10 secs, the configuration with better I/O performance is
with a group size of 32. However, our data shows that
the checkpoint thread is able to start a serialization, in
average, at every 10.5 secs. Not meeting the checkpoint
interval deadline results in a higher loss of tuples during
recovery, since there will be more stale data on the files.
When the group size is 256, the performance impact is
higher, but it gets the operator state at every 10.09 secs. In
general, the performance impact is higher when the join
operator has the per-group modifier. A per-group join has
more checkpointing data structures to maintain and more
files to save; hence, the serialization phase takes longer.

We conducted experiments to evaluate the per-group
join checkpointing when the key attribute of the source
data follows a Zipf distribution. Word frequency is an ex-
ample of distribution that follows Zipf’s law [17]. In our
scenario, this means that there are windows that have a
greater number of new tuples than others. Our data shows
that the I/O performance impact is lower than the per-

group join under uniform distribution (2-3% overhead).
However, the checkpoint thread is not able to meet the
checkpoint deadlines. Instead of serializing the operator
state at every 1 sec, it serializes it at every 6 secs in av-
erage. This happens because a lot of data must be rewrit-
ten to disk for windows with low tuple insertion rate. For
example, we have to re-save a whole chunk of data even
when there is only one new tuple in the group. Our re-
sults suggest that, when the stream data does not follow a
uniform distribution, we should divide the window corre-
sponding to different keys with different group sizes.

6 Related Work
Fault tolerance in stream processing has been a very

active research area over the last few years. Many tech-
niques add fault tolerance by changing the communica-
tion substrate. We argue that this slows down the maxi-
mum throughput of the system and should only be applied
in selected parts of the application. Balazinska et al. [3]
proposes a protocol called DPC. When a failure occurs,
stream operators may produce tentative tuples that need
to be corrected later on. The developer has to know how
to correct results that were produced with tentative tuples.
Our aim is to abstract out the fault tolerance from the user
by providing a language level abstraction. Additionally,
DPC may require operator checkpointing to recover from
a failure. Our techniques can complement DPC.

Another set of fault tolerance techniques are based on
operator replication. Passive standby, active standby [12]
and process-pairs [21] were adapted to the streaming con-
text. Hwang et al. [12] describes upstream backup, which
enforces tuple backup in upstream operators. Tuples are
replayed in case of failure. This technique also changes
the communication substrate. Cai et al. [6] proposes a hy-
brid replication based technique. Replicas are brought up-
to-date via checkpoints of the active replica.

LSS [25] is a checkpoint technique closer to our ap-
proach. The authors assume that data loss is acceptable
during the failure/recovery process of a streaming ap-
plication. LSS provides an API that should be embed-
ded in the operator code right after a tuple is processed.
We automate this process by using SPADE’S code gen-
eration framework to output specific checkpoint meth-
ods based on the operator type. Hwang et al. [13] pro-
poses delta checkpoints for both aggregate and join op-
erators. Our work differs by proposing different check-
point techniques depending on the operator failure seman-
tic. SGuard [15] employs memory management middle-
ware to track application-level memory pages. It uses
copy-on-write to perform asynchronous checkpoints. Our
technique lets the user choose which operators should ap-
ply a checkpointing scheme, decreasing the overall perfor-
mance overhead. Our incremental checkpoint technique
also handles corrupted checkpoint files without requiring
a replicated file system like SGuard does.

There are works that aim to provide application fault
tolerance at the language level [7, 20]. Szentiványi et al
[22] uses aspect-oriented programming features for build-
ing fault-tolerant applications. CATCH [16] is a compiler-



based approach to transparently checkpoint applications.
CATCH is a process level technique and does not apply
to our concept of operator-based checkpointing. Bron-
evetsky et al [5] introduces a pre-compiler that instru-
ments MPI programs for automatic checkpointing. This
approach aims at parallel applications, which have a dif-
ferent behavior than streaming applications.

7 Conclusions
Large-scale stream processing is becoming a paradigm

for developing long-running applications that will moni-
tor, control, and extract knowledge from the critical infras-
tructure in many operational areas. From applications in
manufacturing, responsible for monitoring and acting on
sophisticated tools and fabrication processes [23], to busi-
ness domains such as algorithmic trading [2], to surveil-
lance and fraud detection systems, personal healthcare
and public health systems. These few examples demon-
strate how critical it is to develop mechanisms to ensure
that these applications and the components that make up
the middleware supporting them have the means to stay
up and operating continuously, even in the presence of
software and hardware failures. In this paper, we have
made two contributions towards this goal. First, we have
shown how language primitives coupled with code genera-
tion can provide a flexible mechanism for specifying well-
targeted state checkpointing to large-scale applications.
Second, we have shown how incremental checkpointing
can be carried out for a stream join operator, which is a
fundamental building block in applications that carry out
data correlation on live streams.

We are now investigating and prototyping a mecha-
nism for specifying high-availability segments in stream
processing applications. The aim is to provide a targeted
way of designating portions of the application as critical
and, therefore, express the need to replicate them. We are
also looking into experimentally assess the consequences
of Byzantine failures in stream operators.
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